If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9.6*10^-31x=(0.675-x)(0.472-x)
We move all terms to the left:
9.6*10^-31x-((0.675-x)(0.472-x))=0
We add all the numbers together, and all the variables
-31x-((-1x+0.675)(-1x+0.472))+9.6*10^=0
We add all the numbers together, and all the variables
-31x-((-1x+0.675)(-1x+0.472))=0
We multiply parentheses ..
-((+x^2-0.472x-0.675x+0.3186))-31x=0
We calculate terms in parentheses: -((+x^2-0.472x-0.675x+0.3186)), so:We add all the numbers together, and all the variables
(+x^2-0.472x-0.675x+0.3186)
We get rid of parentheses
x^2-0.472x-0.675x+0.3186
We add all the numbers together, and all the variables
x^2-1.147x+0.3186
Back to the equation:
-(x^2-1.147x+0.3186)
-31x-(x^2-1.147x+0.3186)=0
We get rid of parentheses
-x^2-31x+1.147x-0.3186=0
We add all the numbers together, and all the variables
-1x^2-29.853x-0.3186=0
a = -1; b = -29.853; c = -0.3186;
Δ = b2-4ac
Δ = -29.8532-4·(-1)·(-0.3186)
Δ = 889.927209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29.853)-\sqrt{889.927209}}{2*-1}=\frac{29.853-\sqrt{889.927209}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29.853)+\sqrt{889.927209}}{2*-1}=\frac{29.853+\sqrt{889.927209}}{-2} $
| –9k+8=–10k | | 4.6-1.2x=0.8-54.6x | | 4.6+1.2x=0.8+54.6x | | 3y-9y=9 | | 4x(5+6x)=212 | | 8h=136.h= | | 79-x=54 | | 4x-10°=2x-20° | | C(n)=50+4n | | 6d-2+2d=-2+4d+8 | | 6/7x12=6/7x12 | | 5(x-2)-4(x-5)=x+8 | | 5+x/9=3 | | 140=40y | | 35+x=56 | | Y=9x-1/6 | | z^2−67=0 | | z2−67=0 | | x.24=42 | | w2−45=–64 | | d2+49=0 | | a.10=20 | | 13+u=-9 | | 4u-2=-6u+26 | | -7h=-28 | | `-7h=-28` | | (-3)+10x=27 | | 2.25x+4.5=31.5 | | 4x+3=3/2x+5 | | 2=0.5h | | 3x-7=5x+35 | | 38/c-7=c |